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Abstract

Lam's phenomenological �-renormalization group (RNG) model is quite di�erent from

the other members of that group. It does not make use of the correspondence principle and

the �-expansion procedure. In this report, we demonstrate that Lam's �-RNG model [Phys.

Fluids A, 4, 1007 (1992)] is essentially the physical space version of the classical closure

theory [Leslie and Quarini, J. Fluid Mech., 91, 65 (1979)] in spectral space and consider the

corresponding treatment of the eddy viscosity and energy backscatter.
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Introduction

In this note, we demonstrate that Lam's �-RNG model1 is essentially the physical space

version of the classical closure theory2 in spectral space and consider the corresponding

treatment of the eddy viscosity and energy backscatter.

Analysis

The incompressible N-S equations are
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@t
+ v � rv = �

1

�
rp+ �0r

2v (1)

where �0 is the molecular viscosity, � is the density, and p is the pressure and can be

determined from (1) using r�v = 0. The external driving force that sustains the turbulence

and which acts in the very small wavenumber region is not included in (1) since it plays no

part in the energy cascade process in the inertial range2.

As in both closure and RNG theories, the velocity �eld is �ltered into two components

v = v< + v>; p = p< + p> (2)

where the Fourier-transformed �elds

v<i (k; t) = G(k)vi(k; t); (3)

v>i (k; t) = (1 �G(k))vi(k; t): (4)

The sharp cut-o� �lter of classical closure theory is exactly the same as the RNG technique

of separating the subgrid from the resolvable scales at the cuto� wavenumber �

G(k) =

�
0 if k > � ;

1 if k < �.
(4)

In the classical closure theory of Leslie and Quarini (LQ)2, the �ltered N-S equation is
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v<� (k; t) = M��
(k)

Z
dpdqv<� (p; t)v

<

 (q; t) + f�(k; t); (5)
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where M��
(k) is the standard nonlinear coupling coe�cient2;3. For convenience we have

added to both sides a wavenumber dependent turbulent eddy viscosity �E(k), which is at the

moment unspeci�ed. The term f(k; t) accounts for the Reynolds stress2;4,

R�
 � v>� (p; t)v
>

 (q; t): (6)

the cross stress2;4,

C�
 � v<� (p; t)v
>

 (q; t) + v>� (p; t)v

<

 (q; t) (7)

and the added eddy viscosity �E(k) :

f�(k; t) � �E(k)k
2v<� (k; t) +M��
(k)

Z
dpdq [C�
 +R�
] : (8)

In (6)-(7), jp+ qj < �. It is important to realize that no random force has been inserted

here.

In the Lam approach to � -RNG1, one works in physical space rather than wavenumber

space. The exact resolvable scale Navier-Stokes equations can be written

[
@

@t
� (�0 + �T )r

2]v< = �
1

�
rp< �r � (v<v<) + gfast (9)

where gfast is de�ned by

gfast = r � (v<v<
� vv)� �Tr

2v< = r � (2v>v<
� v>v>)� �Tr

2v: (10)

Note that Lam has introduced a k-independent turbulent eddy viscosity, �T ,which remains

to be chosen. gfast is generated by the �ltering process. The term gfast in physical space

corresponds to the term f(k; t) in wavenumber space, in Eq. (8).

The classical theory proceeds from this point by the use of certain \closure approximations"2;3

An equation for the resolvable spectral energy, �E(k; t), can readily be derived,

h @
@t

+ 2�0k
2
i
�E(k; t) = �T (k; t) + T>(k; t); (11)
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where �T (k; t) is the resolvable scale energy transfer and T>(k; t) is the energy transfer caused

by the cross and Reynolds stresses2 which can be put into the form2;5

T>(k; t) � �2�d(k)k
2 �E(k; t) + U(k): (12)

U(k), which represents the backscatter of energy from small to resolvable scales and is also

the spectrum of the correlation function of f , is given by

U(k) �

Z
�

d pd qB(k; p; q)E(p)E(q)G2(k)[1�G(p)G(q)]: (13)

�d(k; t), the drain eddy viscosity, is given by

�d(k) �

Z
�

d pd qA(k; p; q)E(q)[1�G(p)G(q)]: (14)

The integration domain is denoted by the expression � in which p and/or q > �. The

explicit functional forms of A and B appearing in (13)-(14) are given in Leslie3 and LQ2.

Instead of trying to compute gfast using closure approximations, Lam1 simply tries to

model its correlation function based on physical arguments. In his view, f is simply a guess

of what gfast should be for k � � in the resolvable scale Navier-Stokes equation. He noted

that in the absence of f , the energy spectrum of the 
ow, computed from (5) driven by initial

and/or boundary conditions, will have a Kolmogorov dissipation wavenumber substantially

smaller than �. The primary role of f is to extend for the resolvable scale velocity �eld the

inertial range with a guaranteed Kolmogorov scaling for k � � and beyond.

The forcing function in classical closure theory arises from �ltering at the small scales.

In modeling the correlation function of f , Lam1 assumes the form

< fi(k; !)fj(k
0; !0) >=

2

�3

E
1

�4��
k�d+4��(2�)d+1Pij(k)�(k+ k0)�(! + !0) (15)

where ! is frequency, E is the dissipation rate, d is the dimension of the physical space, �3 is

a constant, and Pij(k) = �ij � kikj=k
2. A multiplicative factor involving �4�� is introduced
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to maintain dimensional consistency for arbitrary �. It is of some interest to compare Eq.

(15) with the forcing correlation function introduced by Yakhot and Orszag (YO)6

< fi(k; !)fj(k
0; !0) >=

2

�
Ek�d+4��(2�)d+1Pij(k)�(k+ k0)�(! + !0); (16)

where � is a known constant determined by 2D0Sd=(2�)
d+1 = 1:594E (YO6) and Sd is the

area of a d-dimensional unit sphere. This form7 is assumed to arise from forcing at k = 0 :

< ff >= �(k)E�(k+ k0) (17)

with the use of Gel'fand's �-function representation in the limit of �! 4 and k! 0

�(k) = lim
�!4

(4� �)k1��: for k ! 0 (18)

To recover (16), it appears that (18) needs to be applied for k 6= 0, without the (4��) factor.

Lam pointed out that the forcing correlation function, Eq. (15), should peak around

�; that its magnitude should be small for small k by an appropriate choice of �T ; and

that its behavior for k � � is unimportant and irrelevant for the evolution of the resolved

modes. Most importantly, the correlation function now depends on �, while in �-RNG6�7,

the correlation function is assumed to be \scale invariant". The dimensionless parameter �

in the correlation function is now available as a freely adjustable parameter, and Lam used

it to make the \predicted value" of Kolmogorov constant acceptable. He showed that either

� = 0 or � = 0:923 yield good results.

The stochastic backscatter f , for isotropic homogeneous turbulence in three dimensions,

has a k4 spectrum to lowest order in wavenumber k (e.g., Ref. 5). Speci�cally,

U(k) =
14

15
k4
Z
1

�

d p�k;p;q(t)
[E(p)]2

p2
for k ! 0: (19)

where �k;p;q(t) = 1=[�k;p;q(t)+�0(k
2+p2+ q2)] and �k;p;q(t) is an \eddy-damping rate" of the

third-order moments associated with the wavevectors k;p, and q.
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Thus, Lam's postulate (which was based on intuitive physical arguments) that U(k) is

small for small k is consistent with classical closure theory.

The advantage of the classical theory is that the energy equation is always satis�ed and

no restriction on the magnitude of � is imposed|so long as � is in the inertial range. On

integrating (11) with respect to k for 0 < k < �, we obtain:

@K

@t
= ��� E: (20)

where K is the integral of �E(k) over the resolved wavenumbers, and E is de�ned by:

E �

Z �

0

T>(k)dk =
Z �

0

2k2�n(k) �E(k)dk: (21)

and ��, the resolved energy transfer term, is given by:

�� �

Z �

0

�T (k)dk:

The net eddy viscosity, �n(k; t), is de�ned
2;5;8�9 as

�n(k) � �d(k)� �b(k): (22)

and �b(k; t), the back-scatter viscosity, is given by

�b(k) � U(k)=(2k2 �E(k)): (23)

From (14) and (23), one can show10 that for k in the inertial range and k � �, the ratio of

�b(k) to �d(k) is equal to
14

15
(k=�)11=3. Spectral large-eddy simulations (LES) of Lesieur and

Rogallo5;11 was based on the resolvable scale Navier-Stokes equation

� @
@t

+ [�0 + �n(k)]k
2
�
v<� (k; t) = M��
(k)

Z Z
dpdqv<� (p; t)v

<

 (q; t): (24)

Lam emphasized that E, the energy dissipation rate of the turbulent 
ow in question,

must be related to the parameters of the turbulent eddies by an ad hoc postulate under his

formulation. Lam's choice1 is
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EL = lim
�!1

2�T (�)

Z �

0

k2E(k)d k: (25)

The large � limiting process in (25) is needed to ensure that the dissipation rate can be

adequately evaluated using information available from the resolved modes alone. In Lam's

approach, the value of � must be su�ciently large such that the dissipation function EL as

given by (25) is independent of �. In physical variables, EL is de�ned by:

EL � �T (�)

 
@u<i
@xk

!2
: (26)

The Smagorinsky result for �T is recovered if EL is eliminated between (26) and �T (�) =

C�E
1=3
L ��4=3. In LES, the Lam requirement that � must be large enough is equivalent to

requiring that (26), computed using data only from resolved modes, be \grid size" inde-

pendent. In Lam's view, an LES calculation must exhibit a Kolmogorov spectrum using

the resolved modes such that the limiting process in (25) is respected. If it does not, then

the calculation would have no theoretical standing. Physically, if � is su�ciently large (so

that EL is independent of �), the contribution of back scattering to the dissipation would be

negligible. The random force f , the surrogate of the gfast, does not appear explicitly in the

�nal LES model of Lam and one needs only to provide a pro�le of < � > so as to introduce

the adjustable parameter � used in computing �T .

Conclusion

Thus, we �nd that Lam's formulation of �-RNG1 is essentially the physical space version

of the spectral classical closure theory2 with �n(k) being replaced by a phenomenological

k-independent �T , but which now depends on arbitrary parameter �.
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